| 01 | 2 marks for AO1 (recall) | 2 | |----|---|---| | | 1 mark: C: ROM is commonly used to store start-up instructions 1 mark: D: ROM is non-volatile | L | | | If more than two lozenges shaded then marks are not awarded. | | | 02 | 4 marks for AO1 (understanding) | | | | 1 mark for each correct point that explains how a Hard Disk Drive operates, up to a maximum of 4 marks. | 4 | | | Examples Include: | | | | A HDD can contain multiple platters (disks); | | | | A disk/disks that move/spin | | | | Each platter is divided into sectors; The state of the sectors is a sector of the th | | | | The disks are spun at a very high speed (approximately 7,200 rpm to
10,000 + rpm); | | | | Read\write heads (move across the disk to) read and write data; | | | | There is one read\write head for each side of a platter ie two heads per
platter; | | | | Data is written to\read from the disk by magnetising\polarising\sensing
microscopic regions on the disk; | | | | Data is organised in concentric rings called tracks; | | | | There is a small circuit board on the drive that controls the reading and
writing of data; | | | | Data is transferred from and to the disk via a cable/electrical current being
passed; | | | | The intersection of sectors and tracks are called blocks;Data is read 1 block at a time; | | | | NE Storing binary, or 1s and 0s without reference to magnetising | | | Max 3 marks for sta | ating the components | 6 | |-----------------------|---|--| | | aling the components | | | | | | | iviax i description r | mark for each component stated. | | | Control Unit; | Decodes instruction; | | | | Controls the fetching and writing of data; | | | Arithmetic Logic L | Init/ Executes mathematical instructions; | | | ALU; | Executes logical instructions; | | | | Compares values held in registers; | | | Clock; | Controls the number of instructions carried out | | | | , | | | | Allows the CPU to synchronise operations; | | | | R. allows the computer to display the time | | | Bus; | Used to transfer data / instructions from one | | | | component of the CPU to another; | | | | A. Variations such as Control bus, Address | | | | bus, Data bus | | | (L1) Cache; | Very fast memory; | | | | Memory close/on CPU; | | | | Stores frequently used instructions/data; | | | Register; | Special purpose (small) memory location (on | | | | , , , , , , , , , , , , , , , , , , , | | | | | | | | Cycle; | | | | Arithmetic Logic L
ALU;
Clock;
Bus; | Controls the fetching and writing of data; Arithmetic Logic Unit/ ALU; Executes mathematical instructions; Executes logical instructions; Compares values held in registers; Clock; Controls the number of instructions carried out each second; Allows the CPU to synchronise operations; R. allows the computer to display the time Bus; Used to transfer data / instructions from one component of the CPU to another; A. Variations such as Control bus, Address bus, Data bus (L1) Cache; Very fast memory; Memory close/on CPU; Stores frequently used instructions/data; | | 03 | 2 | Mark is for AO1 (recall) | 1 | | |----|---|---|---|--| | | | decode; | | | | | | I. Minor spelling errors or hyphenated word I. Case | | | | , | · · · · · · · · · · · · · · · · · · · | | |----|--|---| | 04 | 3 marks for AO1 (understanding) 1 mark for each valid reason given up to a maximum of 3 marks. | 3 | | | Examples include: | | | | To allow sharing of files; To backup files from a PC; To allow remote access of files/access from anywhere; To allow access from any computer/device (with internet access); To give access to a larger amount of storage capacity; To allow concurrent access\collaboration; Can purchase a cheaper (lower spec) computer; Cloud storage is automatically backed up by the host; | | | | May be more fault tolerant/resilient than local storage; R. Relative cost, unless statement is qualified. | | | Systems Architecture F | | PhysicsAndMathsTutor.com | |-----------------------------|---|--------------------------| | 05 2 marks for AO1 (recall) | | 2 | | | A Arithmetic logic unit; | | | | B Control unit; | | | | If more than two lozenges shaded then marks are not awarded. | | | | | | | 06 | 1 mark for AO1 (recall) | | | 06 | 1 mark for AO1 (recall) | 1 | | 06 | 1 mark for AO1 (recall) B Secondary storage is non-volatile; | 1 | 4 marks for AO1 (understanding) Max of four marks. Disk rotates (at high speed); Laser head moves across (radius of) disk; Laser shines onto the disk; Tiny indentations/pits/bumps reflect light differently (to lands/flats)//Different colour of dye reflects or blocks laser light; Reflected light is interpreted into 1s and 0s representing data stored on disk; Data is stored on a single spiral track (rather than concentric tracks); R. Reference to pits and lands corresponding to ones and zeros unless combined with a description of how they reflect light. | 80 | 2 marks for AO1 (recall) | 2 | |----|---|---| | | A computer system: | | | | with a dedicated/specific purpose or function; | | | | built in to a physical product/device/machine; | | | | A. a (computer) system with firmware/software inside a product/device;A. reference to 'system' if relevant examples are given for clarification; | | | | NE. a specific example eg. "like in a washing machine" without further qualification. | | 09 4 marks for AO1 (understanding) 8 marks for AO2 (apply) | Level | Description | Mark range | |-------|--|------------| | 4 | Evidence of a clear understanding is shown through discussion of the devices' properties. Comparisons are well supported by valid technical explanations for the advantages and disadvantages. Explanations are clear and accurate, using correct and detailed technical language throughout . | 10–12 | | 3 | Evidence of a more developed understanding is shown through comparisons of the devices' properties. Comparisons are supported by explanations that give valid technical reasons for the advantages and/or disadvantages. Technical language is used accurately in most cases. | 7–9 | | 2 | Evidence of some understanding is shown by making brief comparisons of the devices' properties. Comparisons are supported by simple descriptions of the advantages and/or disadvantages. There is some use of technical language although its use is sometimes inaccurate. | 4–6 | | 1 | Evidence is shown of limited understanding through a simple identification of which device's properties are better or worse than the other. Limited supporting statements are provided. There is no use of technical language, or if there is it is used inaccurately. | 1–3 | | | No creditworthy material | 0 | ## **Guidance:** There are 5 different properties that can be compared between the devices: cores; clock speed; cache; RAM; HDD/SSD. 12 | Possible comparisons | Device A | Device B | |----------------------|---|---| | Core | Quad (4) core More cores than B. Can process more commands in same time than dual core. | Dual (2) core Less cores than A. Can process fewer commands in same time than quad core. | | Clock Speed | Lower clock speed than B. Would process fewer instructions per second than B if it had the same number of cores. Combined with the quad core processor this equates to raw power of 6.4 billion instruction per sec – theoretically worse than B. Slower processor so more energy efficient. | Higher clock speed than A. Would process more instructions per second than A if it had the same number of cores. Combined with the dual core processor this equates to raw power of 7.8 billion instructions per sec – so theoretically better than A. Faster speed means more power consumption/less efficient. So may run hotter. | | Cache | 8 MB cache More cache than B. Theoretically CPU A will have to wait less time to get instructions. Despite less raw speed this may mean A is overall faster than B. | 2 MB cache Less cache than A. Because it has less cache than A there might be bottlenecks. This might negate B's overall better raw speed than A. | | RAM | 16 GB RAM More RAM than B. Potential boost to A as more programs and data will be held in memory, reducing time to read from secondary storage. | 4 GB RAM Less RAM than A. More likely to require use of virtual memory. Increased access of secondary storage may be balanced by use of faster SSD. | | Secondary Storage | 2 TB Hard Disk Drive (HDD) More storage than B. Slower access than SSD. Less resilient, as mechanical. May be more suitable for large media files. | 250 GB Solid State Drive (SSD) Much less storage than A. SSDs more resilient. SSDs faster. because uses flash memory. Less useful for storing large files, eg media. More energy efficient as no motor. | | Overall comparison | Overall, not much difference in processin mobile device processing lots of media a with limited storage space. | | # A maximum of 2 marks can be awarded. Example mark points include: RAM is volatile // the contents of RAM are lost when the power is removed // secondary storage is non-volatile // the contents of secondary storage are not lost when the power is removed; RAM capacities are (usually) lower than secondary storage capacities; generally (the contents of RAM can be read/written) faster than secondary storage // RAM is physically closer to the CPU; R. references to cost R. references to physical size | Qu | Part | Marking guidance | Total
marks | |----|------|--|----------------| | 12 | | 2 marks for AO1 (understanding) | 2 | | | | RAM is cheaper (per byte); Typically, the capacity of cache memory is not enough to store both data and programs. | | | Qu | Part | Marking guidance | Total
marks | |----|------|--|----------------| | 13 | 1 | 2 marks for AO1 (understanding) | 2 | | | | Maximum of two marks from: | | | | | enables user to access their data from more places/devices; enables user to more easily share data with others (can make parts of their cloud storage publicly available) // To allow sharing of files; increases the amount of potential storage available; reduced cost of computing devices for users as no need for as much built-in secondary storage // Can potentially purchase a cheaper (lower spec) computer; to allow concurrent access/collaboration; cloud storage is automatically backed up by the host; | | | | | R. Relative cost, unless statement is qualified. | | | Qu | Part | Marking guidance | Total
marks | |----|------|--|----------------| | 13 | 2 | 2 marks for AO2 (apply) | 2 | | | | Maximum of two marks from: | | | | | SSDs are (relatively) expensive // have higher cost per (giga)byte;
SSDs (typically) have lower capacity (than magnetic hard drives); | | | | | 2 marks if a valid point is made along with a suitable valid expansion | | | | | A. magnetic hard drives (usually) have higher write/erase cycles (which can make them more suitable for hard disk recording, eg music, video) A. SSDs have limited write/erase cycles // SSDs degrade over time | | | Qu | Part | Marking guidance | Total
marks | |----|------|---|----------------| | 14 | 1 | Mark is for AO1 (recall) | 1 | | | | Physical / electrical / electronic Component(s) / part(s) / element (of a computer system); | | | Qu | Part | Marking guidance | Total
marks | |----|------|---|----------------| | 14 | 2 | 3 marks for AO1 (recall) | 3 | | | | Maximum 1 mark for each component | | | | | Clock Regulates the timing and speed of (computer) operations // sends out a regular electronic pulse / timing signal; | | | | | Control Unit Coordinates the actions of the CPU // decodes instructions // sends control signals; A. controls the flow of data through the CPU | | | | | Register Holds data used when executing an instruction // holds the result of executing an instruction // holds an instruction (CIR) // holds a memory address (MAR); | | | Qu | Part | Marking guidance | | |----|------|--|---| | 14 | 3 | Mark is for AO1 (understanding) The processor with two cores may be able to process two instructions / tasks / processes in parallel / at the same time / simultaneously; | 1 | | Qu | Part | Marking guidance | | |----|------|--|---| | 14 | 4 | Mark is for AO1 (recall) | 1 | | | | Non-volatile memory retains data when power is lost / does not lose its contents when power is lost; | | | Qu | Part | Marking guidance | | | | |----|------|---------------------------------|---|--|--| | 14 | 5 | Mark is for AO1 (understanding) | 1 | | | | | | RAM;
Cache;
Register; | | | | | | | A. examples such as DRAM, SRAM | | | | | Qu | Part | Marking guidance | | |----|------|--|---| | 14 | 6 | 2 marks for AO1 (understanding) | 2 | | | | Storing data / files; When the computer is turned off // on a long-term basis // using non-volatile storage; | | | | | A. to (temporarily) store data in virtual memory // (to implement) demand paging // to buffer processes | | | Qu | Part | Marking guidance | | | | |----|------|---|--|--|--| | 15 | 1 | marks for AO1 (understanding) | | | | | | | Data required (by an instruction) may be fetched from main memory // (An instruction) may load / fetch / get data from main memory; | | | | | | | Result (of instruction) may be stored in main memory // (An instruction) may store a value in main memory; | | | | | | | R. references to information | | | | | Qu | Part | Marking guidance | Total
marks | |----|------|---|----------------| | 15 | 2 | 2 marks for AO1 (understanding) | 2 | | | | 1 mark for each stage described. | | | | | Fetch stage The (next) instruction is fetched from the memory (to the CPU); | | | | | Decode stage The instruction is decoded (to work out what it is); | | 4.5 Systems Architecture PhysicsAndMathsTutor.com | Ī | Qu | Part | Marking guidance | Total | |---|----|------|------------------|-------| | | Qu | Part | Marking guidance | marks | | 16 | 1 | 1 mark for AO1 (recall) and 1 mark for AO2 (apply) | 2 | |----|---|---|---| | | | 1000 × 4 // 4000;;× | | | | | 1 mark for AO1: identifying that there are 1000 megabytes in a gigabyte;
1 mark for AO2: multiplying by 4; | | | | | A. 1024 × 4 // 4096;; | | | | | Maximum 1 mark: If final answer not correct. | | | | | | | PhysicsAndMathsTutor.com | Qu | Part | Marking guidance | Total
marks | |----|------|---|----------------| | 16 | 2 | All marks AO1 (understanding) Lighter; Smaller; Uses less power; More robust; Generates less heat; Quieter; Max 2 | 2 | | 16 | 3 | 2 marks for AO2 (apply) Using just solid state would cost much more; Can get higher storage capacity by including magnetic hard disk; | 2 | | 16 | 4 | All marks AO1 (understanding) On a hard disk binary data represented by tiny magnetised regions; where the magnetic orientation in one direction represents 0, and the other direction represents 1; When reading data the read/write head is moved (to be over correct track); and the platter/disk spins round; A whole sector/block read in one go (by the read/write head); Max 4 | 4 | | Qu | Part | Marking guidance | Total | |----|------|------------------|-------| | Qu | Part | Marking guidance | marks | | | l - | | | | | |--|-----|---------|---|------------|--| | | | Level | Description | Mark Range | | | | | 3 | Answer demonstrates a sustained line of reasoning with a substantiated explanation for the recent large growth in the use of cloud storage that includes both technological and social reasons. | 7-9 | | | | | | There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including relevant points covering at least two of legal, ethical and environmental issues. | | | | | | 2 | Answer includes an explanation for the recent large growth in the use of cloud storage that includes both technological and social reasons. There is a logically structured consideration of the advantages and the disadvantages associated with the use of cloud storage - including one or two relevant points related to legal, ethical and environmental issues. | 4-6 | | | | | 1 | The answer includes either a description of some of the reasons for the recent large growth in the use of cloud computing and/or brief consideration of the advantages and/or disadvantages associated with using cloud storage. | 1-3 | | | | | No cred | itworthy answer | 0 | | ### **Guidance - Indicative Response (reasons for growth)** Higher bandwidth mobile networks (eg 4G); Increased availability of mobile devices: Reduction in cost of large capacity storage devices; Improvements in network security; People have a higher level of trust in cloud storage; Improvements in web browser software; Increased availability of supercomputers (for cloud processing); Companies have managed to develop business models based on cloud computing that allow them to make a profit; ### **Guidance - Indicative Response (advantages of cloud storage)** Enables user to access their data from more places/devices; Enables user to more easily share data with others (can make parts of their cloud storage publically available); Increases the amount of storage available: Reduced cost of computing devices for users as no need for as much built-in secondary storage; # **Guidance - Indicative Response (disadvantages of cloud storage)** Increased security risks; Relies on access to high-bandwidth network connection; Could potentially cost more due to ongoing costs; Reliance on company providing the cloud service; Increased chance of others accessing personal data (data privacy issues); Letter D; C; B; Description Mark as follows: Sends a continuous series of electronic pulses Decodes the current instruction Completes calculations 1 mark: one row correct; 2 marks: two rows correct; 3 marks: all rows correct; | Question | Part | Marking guidance | Total
marks | |----------|------|---|----------------| | 18 | 1 | 6 marks for AO1 (understanding) Note for examiners: • points from all three components must be included for 6 marks • points from at least two components must be included for 4 marks. Maximum of 6 marks from: Control unit MP1. Decodes instructions; MP2. Coordinates/directs the execution of instructions; MP3. Sondo (control) signals to other components // Controls | 6 | | | | MP3. Sends (control) signals to other components // Controls the transfer/flow of instructions and data (in the CPU) // Coordinates/directs the fetch execute cycle; R. messages for signals MP4. Coordinates the I/O devices; A. examples of control signals | | | | | Clock MP5. Sends a regular (electrical) signal/pulse; MP6. Synchronises operations/components; MP7. Influences the number of instructions carried out each second; | | | | | Cache MP8. Makes retrieving data/instructions from the computer's memory more efficient; MP9. Stores data/instructions for faster access (by the processor); MP10. Stores frequently used data/instructions // data/instructions likely to be used in the near future; | | | Question | Part | Marking guidance | Total
marks | |----------|------|--|----------------| | 18 | 2 | 3 marks for AO1 (recall) | 3 | | | | Maximum of 3 marks from the following: | | | | | MP1. Increase the clock speed; MP2. Increase the number of processor cores; MP3. Increase the cache size; MP4. Changing the type of cache memory (eg L3 to L1); A. increase data bus width, increase word size | |